Extensions 1→N→G→Q→1 with N=(C22xC8):C2 and Q=C2

Direct product G=NxQ with N=(C22xC8):C2 and Q=C2
dρLabelID
C2x(C22xC8):C264C2x(C2^2xC8):C2128,1610

Semidirect products G=N:Q with N=(C22xC8):C2 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22xC8):C2:1C2 = (C2xC8).2D4φ: C2/C1C2 ⊆ Out (C22xC8):C2324(C2^2xC8):C2:1C2128,749
(C22xC8):C2:2C2 = M4(2).10D4φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:2C2128,783
(C22xC8):C2:3C2 = C4oD4:D4φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:3C2128,1740
(C22xC8):C2:4C2 = D4.(C2xD4)φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:4C2128,1741
(C22xC8):C2:5C2 = (C2xQ8):16D4φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:5C2128,1742
(C22xC8):C2:6C2 = Q8.(C2xD4)φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2:6C2128,1743
(C22xC8):C2:7C2 = (C2xD4):21D4φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:7C2128,1744
(C22xC8):C2:8C2 = (C2xQ8):17D4φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2:8C2128,1745
(C22xC8):C2:9C2 = (C2xD4).301D4φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:9C2128,1828
(C22xC8):C2:10C2 = (C2xD4).303D4φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2:10C2128,1830
(C22xC8):C2:11C2 = (C2xD4).304D4φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2:11C2128,1831
(C22xC8):C2:12C2 = C4.2+ 1+4φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:12C2128,1930
(C22xC8):C2:13C2 = C4.142+ 1+4φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:13C2128,1931
(C22xC8):C2:14C2 = C4.152+ 1+4φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:14C2128,1932
(C22xC8):C2:15C2 = C4.162+ 1+4φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2:15C2128,1933
(C22xC8):C2:16C2 = C4.182+ 1+4φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2:16C2128,1935
(C22xC8):C2:17C2 = C4.192+ 1+4φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2:17C2128,1936
(C22xC8):C2:18C2 = M4(2).4D4φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:18C2128,750
(C22xC8):C2:19C2 = M4(2).5D4φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:19C2128,751
(C22xC8):C2:20C2 = 2+ 1+4.2C4φ: C2/C1C2 ⊆ Out (C22xC8):C2324(C2^2xC8):C2:20C2128,523
(C22xC8):C2:21C2 = 2+ 1+4:4C4φ: C2/C1C2 ⊆ Out (C22xC8):C2324(C2^2xC8):C2:21C2128,526
(C22xC8):C2:22C2 = M4(2).43D4φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:22C2128,608
(C22xC8):C2:23C2 = M4(2).44D4φ: C2/C1C2 ⊆ Out (C22xC8):C2324(C2^2xC8):C2:23C2128,613
(C22xC8):C2:24C2 = C42.326D4φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:24C2128,706
(C22xC8):C2:25C2 = C42.116D4φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:25C2128,707
(C22xC8):C2:26C2 = C24.73(C2xC4)φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:26C2128,1611
(C22xC8):C2:27C2 = D4o(C22:C8)φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:27C2128,1612
(C22xC8):C2:28C2 = C42.265C23φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:28C2128,1662
(C22xC8):C2:29C2 = C42.266C23φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2:29C2128,1664
(C22xC8):C2:30C2 = M4(2):22D4φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:30C2128,1665
(C22xC8):C2:31C2 = M4(2):23D4φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2:31C2128,1667
(C22xC8):C2:32C2 = C42.297C23φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:32C2128,1708
(C22xC8):C2:33C2 = C42.298C23φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:33C2128,1709
(C22xC8):C2:34C2 = C42.299C23φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2:34C2128,1710
(C22xC8):C2:35C2 = C42.694C23φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2:35C2128,1711
(C22xC8):C2:36C2 = C42.300C23φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2:36C2128,1712
(C22xC8):C2:37C2 = C42.301C23φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2:37C2128,1713
(C22xC8):C2:38C2 = C42.264C23φ: trivial image32(C2^2xC8):C2:38C2128,1661
(C22xC8):C2:39C2 = C42.681C23φ: trivial image64(C2^2xC8):C2:39C2128,1663

Non-split extensions G=N.Q with N=(C22xC8):C2 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22xC8):C2.1C2 = M4(2).11D4φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2.1C2128,784
(C22xC8):C2.2C2 = C42.10D4φ: C2/C1C2 ⊆ Out (C22xC8):C2324(C2^2xC8):C2.2C2128,830
(C22xC8):C2.3C2 = (C2xD4).302D4φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2.3C2128,1829
(C22xC8):C2.4C2 = C4.172+ 1+4φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2.4C2128,1934
(C22xC8):C2.5C2 = M4(2).6D4φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2.5C2128,752
(C22xC8):C2.6C2 = (C2xC8).55D4φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2.6C2128,810
(C22xC8):C2.7C2 = (C2xC8).165D4φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2.7C2128,811
(C22xC8):C2.8C2 = C23.M4(2)φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2.8C2128,47
(C22xC8):C2.9C2 = C23.1M4(2)φ: C2/C1C2 ⊆ Out (C22xC8):C2324(C2^2xC8):C2.9C2128,53
(C22xC8):C2.10C2 = C23.2C42φ: C2/C1C2 ⊆ Out (C22xC8):C2324(C2^2xC8):C2.10C2128,123
(C22xC8):C2.11C2 = C23.3C42φ: C2/C1C2 ⊆ Out (C22xC8):C2324(C2^2xC8):C2.11C2128,124
(C22xC8):C2.12C2 = (C22xC8):C4φ: C2/C1C2 ⊆ Out (C22xC8):C2324(C2^2xC8):C2.12C2128,127
(C22xC8):C2.13C2 = M4(2).40D4φ: C2/C1C2 ⊆ Out (C22xC8):C2324(C2^2xC8):C2.13C2128,590
(C22xC8):C2.14C2 = (C2xD4).Q8φ: C2/C1C2 ⊆ Out (C22xC8):C2324(C2^2xC8):C2.14C2128,600
(C22xC8):C2.15C2 = M4(2).24D4φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2.15C2128,661
(C22xC8):C2.16C2 = C42.428D4φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2.16C2128,669
(C22xC8):C2.17C2 = C42.107D4φ: C2/C1C2 ⊆ Out (C22xC8):C232(C2^2xC8):C2.17C2128,670
(C22xC8):C2.18C2 = C42.261C23φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2.18C2128,1655
(C22xC8):C2.19C2 = C42.678C23φ: C2/C1C2 ⊆ Out (C22xC8):C264(C2^2xC8):C2.19C2128,1657
(C22xC8):C2.20C2 = C42.260C23φ: trivial image64(C2^2xC8):C2.20C2128,1654

׿
x
:
Z
F
o
wr
Q
<